Abstract

Anode-supported solid oxide fuel cells (SOFCs) consisting of NiO-Y0.16Zr0.92O2-δ (YSZ) anode support layer, NiO-YSZ anode functional layer, YSZ electrolyte and (La0.8Sr0.2)0.98MnO3-δ (LSM)-YSZ cathode were successfully fabricated by single-step co-firing at 1250°C. Cells were prepared by tape casting, with Fe2O3 sintering aid used to obtain a nearly dense YSZ electrolyte. Scanning electron microscope (SEM)-energy dispersive X-ray spectroscopy (EDS) showed no evidence of reactions or interdiffusion between layers during co-firing. The cells yielded area specific resistance of 0.44 Ωcm2 and a maximum power density of 0.91 W/cm2 at 800°C. Impedance spectroscopy measurements showed that the LSM-YSZ cathode polarization resistance was higher for the co-fired cathodes than for a cathode that was fired separately at an optimized temperature of 1175°C. However, reducing the cell co-firing time decreased cathode polarization resistance and increased cell power output. Analysis of SEM images showed that co-firing caused more sintering and coarsening than in the optimally-fired LSM-YSZ, reducing three-phase boundary density and explaining the increased cathode resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.