Abstract
The two major barriers of practical lithium-sulfur batteries are the poor reversibility of lithium-metal anode and sluggish kinetics of sulfur cathode. Here, we report a simple yet cogent, molecular tailoring approach for lithium polysulfides, enabling a synergistic enhancement of anode reversibility and cathode kinetics. We show that SnI4 coordinates with lithium polysulfides to form soluble complexes, resulting in a Li2 SnS3 -rich anode interphase layer. As Li2 SnS3 is stable against parasitic reactions and has a lower ionic resistance over cycling, the Li plating/stripping efficiency is greatly improved. In addition, the formation of soluble complexes between SnI4 and lithium polysulfides play a non-negligible role in suppressing the clustering behavior of lithium polysulfide molecules, resulting in a significant enhancement in sulfur conversion kinetics under lean electrolyte conditions. The synergistic improvement is validated in anode-free, lean-electrolyte pouch cells with a Li2 S cathode that displays capacity retention of 78 % after 100 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.