Abstract

Na|NaCl-CaCl2|Zn liquid metal battery is regarded as a promising energy storage system for power grids. Despite intensive attempts to present a real mechanism of metal electrodes reaction, those for Na||Zn LMBs are not clear yet. Herein, the anode reactions for the multiple discharge potential plateaus were deduced by means of FactSage thermochemical software, which were subsequently validated by X-ray diffraction analysis and the modeling of phase transformation in the cooling process. A pre-treatment process was proposed for the analysis of anode product composition using the atomic absorption spectrometry method, and the anode states at working temperature (560 °C) were obtained by the Na-Ca-Zn ternary phase for the first time. The results indicate the discharge of Na and Ca led to the formation of Ca-Zn intermetallic compounds, whilst the extraction of Ca in Ca-Zn intermetallic compounds was responsible for the multiple discharge plateaus. Moreover, it was found that the charging product was in electrochemical double liquid metal layers, which are composed of Na and Ca with dissolved Zn respectively..

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.