Abstract

The electrochemical reaction of carbon dioxide (CO2 ) in aqueous electrolyte solutions is attracting increasing attention for sustainable chemical production. Boron-doped diamond (BDD) electrodes have been previously shown to be very effective for the stable electrochemical production of formic acid from CO2 . Typically, the electrochemical production of formic acid by CO2 reduction (CO2 R) reaction is performed with a dual-compartment flow reactor equipped with a membrane separator. The problems caused by the membrane separator, such as scaling-up, complicated operational control and materials costs can be solved using a membrane free single-compartment reactor. Here we demonstrate anode reaction control for a single-compartment CO2 R flow reactor using a surface-activated BDD cathode and achieve a Faradaic efficiency for formic acid production of over 70 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call