Abstract

Three anode estimation methods are presented and evaluated for their accuracy and storage requirements. After generating training data using a Pseudo-2D Physiochemical model, these models are fit and trained to estimate the anode potential during fast charge events. A simplified linear and non-linear model show an estimationerror of ca. 13 mV and the lowest memory demand, however, a novel random forest model reduces the error to 2.6 mV. The empirical methods are suitable for a lithium plating warning detection system during fast charging and are further evaluated for over-fitting and robustness using an out-of-sample dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.