Abstract

The integrity of anode/organic interfacial contact is shown to be crucial to the performance and stability of archetypical small molecule organic light-emitting diodes (OLEDs). In this contribution, vapor-deposited lipophilic, hole-transporting 1,4-bis(phenyl-m-tolylamino)biphenyl (TPD) and 1,4-bis(1-naphthylphenylamino)biphenyl (NPB) thin films are shown to undergo decohesion on ITO anode surfaces under mild heating. An effective approach to ameliorate such interfacial decohesion is introduction, via self-assembly or spin-coating, of covalently bound N(p-C6H4CH2CH2CH2SiCl3)3 (TAA)- and 4,4‘-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPD-Si2)-derived adhesion/injection layers at the anode/hole transport layer interface. The resulting angstrom-scale hole transport layers prevent decohesion of vapor-deposited hole transport layers and significantly enhance OLED hole injection fluence. OLEDs fabricated with these modified interfaces exhibit appreciably reduced turn-on voltages, considerably high...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.