Abstract

The local acidity at the anode surface during electrolysis is apparently stronger than that in bulk electrolyte due to the deprotonation from the reactant, which leads to the deteriorated electrocatalytic performances and product distributions. Here, an anode-electrolyte interfacial acidity regulation strategy has been proposed to inhibit local acidification at the surface of anode and enhance the electrocatalytic activity and selectivity of anodic reactions. As a proof of the concept, CeO2-x Lewis acid component has been employed as a supporter to load Au nanoparticles to accelerate the diffusion and enrichment of OH- toward the anode surface, so as to accelerate the electrocatalytic alcohol oxidation reaction. As the result, Au/CeO2-x exhibits much enhanced lactic acid selectivity of 81% and electrochemical activity of 693 mA·cm-2 current density in glycerol oxidation reaction compared to pure Au. Mechanism investigation reveals that the introduced Lewis acid promotes the mass transport and concentration of OH- on the anode surface, thus promoting the generation of lactic acid through the simultaneous enhancements of Faradaic and non-Faradaic processes. Attractively, the proposed strategy can be used for the electro-oxidation performance enhancements of a variety of alcohols, which thereby provides a new perspective for efficient alcohol electro-oxidations and the corresponding electrocatalyst design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.