Abstract

Deficits in locomotor function, including impairments in walking speed and balance, are major problems for many individuals with incomplete spinal cord injury (iSCI). However, it remains unclear which type of training paradigms are more effective in improving balance, particularly dynamic balance, in individuals with iSCI. The purpose of this study was to determine whether anodal transcutaneous spinal direct current stimulation (tsDCS) can facilitate learning of balance control during walking in individuals with iSCI. Fifteen individuals with iSCI participated in this study and were tested in two sessions (i.e., tsDCS and sham conditions). Each session consisted of 1min of treadmill walking without stimulation or perturbation (baseline), 10min of walking with either anodal tsDCS or sham stimulation, paired with bilateral pelvis perturbation (adaptation), and finally 2min of walking without stimulation and perturbation (post-adaptation). The outcome measures were the dynamic balance, assessed using the minimal margin of stability (MoS), and electromyography of leg muscles. Participants demonstrated a smaller MoS during the late adaptation period for the anodal tsDCS condition compared to sham (p = 0.041), and this MoS intended to retain during the early post-adaptation period (p = 0.05). In addition, muscle activity of hip abductors was greater for the anodal tsDCS condition compared to sham during the late adaptation period and post-adaptation period (p < 0.05). Results from this study suggest that anodal tsDCS may modulate motor adaptation to pelvis perturbation and facilitate learning of dynamic balance control in individuals with iSCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call