Abstract

Transcranial direct current stimulation (tDCS) has been shown to have mixed effects on working memory (WM) capacity in healthy individuals. Different stimulation paradigms may account for these discrepancies, with certain features being favored. To determine the effect in the context of anodal tDCS, we investigated whether anodal tDCS induced cortical oscillatory changes during a WM task. Specifically, we tested whether anodal offline tDCS over the left prefrontal cortex (PFC) enhances WM capacity by modulating the oscillatory activity in the left dorsolateral PFC (DLPFC) using magnetoencephalography (MEG). This study employed a double-blind, randomized, crossover design, in which 24 healthy right-handed participants conducted MEG recordings during a 3-back task after administration of 2 mA tDCS or sham stimulation as a placebo. Our results showed that the effect of tDCS did not appear in the behavioral indices—WM accuracy (d′) or reaction time (RT). From the results of the time-frequency analysis, significant event-related synchronization (ERS) in the high-gamma band (82–84 Hz) of the left DLPFC was found under the tDCS condition; however, ERS was not correlated with WM capacity. Furthermore, we calculated the modulation index (MI), which indicates the strength of phase-amplitude coupling (PAC). tDCS significantly decreased MI of the left DLPFC, representing the theta-gamma PAC during the n-back task using color names as verbal stimuli. Our results suggest that although tDCS increased the gamma-band oscillation indicating greater neural activity in the left DLPFC, it did not lead to an improvement of WM capacity; this may be due to the inability of gamma-band oscillation to couple with the task-induced theta wave. WM capacity might not increase unless theta-gamma PAC is not enhanced by tDCS.

Highlights

  • Working memory (WM) permits the maintenance of perceived information over a short period of time

  • We found that offline anodal Transcranial direct current stimulation (tDCS) over F3 did not improve working memory (WM) performance in accuracy and speed, partially rejecting our hypothesis (Figure 3)

  • We found that tDCS significantly enhanced high-gamma band power regardless of the condition, because the interaction was not significant

Read more

Summary

Introduction

Working memory (WM) permits the maintenance of perceived information over a short period of time. Electroencephalography (EEG) and magnetoencephalography (MEG) studies have frequently reported event-related oscillatory changes, which are considered to represent the increase or decrease in synchronous activity of neuronal populations. When frequency-specific changes of the ongoing oscillatory power occur, the increase or decrease of power is called event-related synchronization (ERS) or desynchronization (ERD), respectively (Pfurtscheller and Lopes da Silva, 1999). Some studies have reported prominent theta power increases over frontal regions during various WM tasks (Ishii et al, 1999; Jensen and Tesche, 2002; Hsieh and Ranganath, 2014). Task-dependent theta band oscillations recorded over the frontal cortex have been shown to increase with memory demand (Jensen and Tesche, 2002). An integrated study using EEG and magnetic resonance spectroscopy confirmed that in vivo GABA measures, gamma-band oscillations, and WM capacity were tightly correlated (Chen et al, 2014)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.