Abstract
A series of annulated thienyl-vinylene-thienyl (ATVT) building blocks having varied ring sizes, isomeric structures, and substituents was synthesized and characterized by spectroscopic, electrochemical, quantum chemical, and crystallographic methods. It is found that ATVT ring size and isomeric structure critically affect the planarity, structural rigidity, optical absorption, and redox properties of these new π-units. Various solubilizing substituents can be introduced on the annulated hydrocarbon fragments, preserving the ATVT planarity and redox properties. The corresponding π-conjugated copolymers comprising ATVT units and electron-deficient units were also synthesized and characterized. The solubility, redox properties, and carrier transport behavior of these copolymers also depend remarkably on the annulated ring size and the ATVT unit isomeric structure. One of the copolymers composed of an ATVT with five-membered rings (1), (E)-4,4′,5,5′-tetrahydro-6,6′-bi(cyclopenta[b]thiophenylidene), and a naph...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.