Abstract

Annularly and radially phase-modulated spatiotemporal necklace-shaped patterns (SNPs) in the complex Ginzburg-Landau (CGL) and complex Swift-Hohenberg (CSH) equations are theoretically studied. It is shown that the annularly phase-modulated SNPs, with a small initial radius of the necklace and modulation parameters, can evolve into stable fundamental or vortex solitons. To the radially phase-modulated SNPs, the modulated "beads" on the necklace rapidly vanish under strong dissipation in transmission, which may have potential application for optical switching in signal processing. A prediction that the SNPs with large initial radii keep necklace-ring shapes upon propagation is demonstrated by use of balance equations for energy and momentum. Differences between both models for the evolution of solitons are revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call