Abstract
We prove that the Khovanov-Lee complex of an oriented link, L, in a thickened annulus, A x I, has the structure of a bifiltered complex whose filtered chain homotopy type is an invariant of the isotopy class of L in A x I. Using ideas of Ozsvath-Stipsicz-Szabo as reinterpreted by Livingston, we use this structure to define a family of annular Rasmussen invariants that yield information about annular and non-annular cobordisms. Focusing on the special case of annular links obtained as braid closures, we use the behavior of the annular Rasmussen invariants to obtain a necessary condition for braid quasipositivity and a sufficient condition for right-veeringness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.