Abstract

In this paper, we report on the emission of electrons from a ferroelectric cathode in a coaxial gun geometry. The electrons are emitted from the inner conductor of the coaxial system and are accelerated radially. An axial magnetic field causes the formation of an azimuthal annular electron flow. The electrostatic potential distribution then leads to the ejection of the annular beam from the anode-cathode region into the drift space. A beam energy of up to 50 keV and an electron current of up to 250 A is typical in this proof of principle experiment. The Hull cutoff condition is found to considerably underestimate the magnetic field required to insulate the radial electron current flow in the diode. The results obtained are consistent with earlier data showing that the behavior of the ferroelectric is closely coupled to the changing state of the ferroelectric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.