Abstract

A prominent innervation of the pineal gland of the European hamster with nerve fibres containing neuropeptide Y (NPY) and tyrosine hydroxylase (TH) was demonstrated by means of immunohistochemistry. Nearly all the TH- and NPY-immunoreactive nerve fibres in the superficial pineal gland disappeared after bilateral superior cervical ganglionectomy, showing that the majority of NPY- and TH-immunoreactive nerve fibres belonged to the sympathetic nervous system. Since, in the European hamster, preliminary studies of the NPY-fibre density in the pineal gland had indicated seasonal changes, the density of NPY-immunoreactive nerve fibre profiles was ascertained in the superficial pineal gland in a series of animals between the first part of November and late April. The highest density of NPY-immunoreactive nerve fibre profiles was observed during midwinter. On the other hand, during the same period of the year, the number of sympathetic TH-immunoreactive sympathetic nerve fibre profiles did not exhibit seasonal variation, nor did substitution of testosterone, during the sexually inactive period, affect the density of NPY-containing nerve fibres in the gland. Our results show the presence of a testosterone-independent annual variation in the content of NPY in the sympathetic nerve fibres innervating the pineal gland of the European hamster. This variation can be correlated with the changes in the daily pattern of melatonin production observed by others in the same species at this period of the year.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call