Abstract

AbstractIn response to present‐day ice mass loss on and near the Greenland Ice Sheet, steady crustal uplifts have been observed from the network of Global Positioning System (GPS) stations mounted on bedrock. In addition to the secular uplift trends, the GPS time series also show prominent annual variability. Here we examine the annual changes of the vertical displacements measured at two GPS stations (SRMP and UPVK) near Upernavik Isstrøm in western Greenland. We model elastic loading displacements due to various surface mass loading including three nonice components: atmospheric pressure, ocean bottom pressure, continental water storage, and one ice component, i.e., surface mass balance (SMB). We find that the contribution from atmospheric pressure changes can explain 46% and 78% of the annual amplitude observed in the GPS verticals at SRMP and UPVK, respectively. We also show that removing the predicted loading displacements due to SMB adversely increases the annual variance of the GPS residuals. However, using the GPS data alone, we cannot identify the exact cause(s) of this discrepancy because the annual loading displacements are sensitive to the SMB changes from over 85% of the ice sheet area. Alternatively, by differencing vertical displacements between the two stations, we find a good agreement between the modeled differential SMB loading displacements and the GPS residuals after removing nonice components. Our study highlights the necessity of correcting for nonice loading contributions in the GPS measurements of crustal deformation to infer ice mass changes in Greenland at annual periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.