Abstract

AbstractTo clarify relationships between year‐class strength and larval growth of walleye pollock (Gadus chalcogrammus), and oceanographic conditions in the Pacific stock off Hokkaido and Tohoku, Japan, we undertook conductivity/temperature/depth (CTD) observations and investigated larval densities, larval otolith increment widths and larval prey densities (of copepod nauplii) of the 2008, 2009, 2010 and 2011 yr classes in Funka Bay. Oyashio Coastal Water (OCW) flowed into the bay in late February in 2008, 2010 and 2011, and the mean water temperatures decreased to 1.9–3.1 °C in March. OCW was not observed in 2009, and it was warm in late February (≥3.4 °C). Increment widths of lapillar otoliths during the yolk‐sac stage were wide in 2009 and 2011, medium in 2010 and narrow in 2008. Increment widths during the first‐feeding stage tended to become wider as the hatch month progressed, and the annual variation during the first‐feeding stage was larger than that of the yolk‐sac stage. The densities of the primary food for the larvae were high in 2008 when larval increment widths were narrowest, so the effect of prey abundance on larval growth appeared to be small. The ranking of the larval abundance in March was nearly coincident with that of the increment width during the larval stage. We, therefore, suggest that the larval growth rate is associated with the mortality rate and that the growth–mortality hypothesis may be applicable to walleye pollock in Funka Bay. Feeding success under warm water conditions may be an important factor that contributes towards high growth rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call