Abstract

We reconstructed the annual temperature anomaly series in Xinjiang during 1850–2001 based on three kinds of proxies, including 17 tree-ring width chronologies, one tree-ring δ13C series and two δ18O series of ice cores, and instrumental observation data. The low- and high-frequency signal decomposition for the raw temperature proxy data was obtained by a fast Fourier transform filter with a window size of 20 years, which was used to build a good relationship that explained the high variance between the temperature and the proxy data used for the reconstruction. The results showed that for 1850–2001, the temperature during most periods prior to the 1920s was lower than the mean temperature in the 20th century. Remarkable warming occurred in the 20th century at a rate of 0.85°C/100a, which was higher than that during the past 150 years. Two cold periods occurred before the 1870s and around the 1910s, and a relatively warm interval occurred around the 1940s. In addition, the temperature series showed a warming hiatus of approximately 20 years around the 1970s, and a rapid increase since the 1980s.

Highlights

  • December 3, 2015 temperature series might be reconstructed from proxy data with high time resolution (e.g., tree-rings, ice cores), to extend the datasets to compensate for the deficiencies in the instrument observations, especially in western China (e.g., in Xinjiang, Tibet), where few observations are available prior to the 1950s

  • The results indicate that most tree ring width series contain high- or low-frequency signals of temperature variations, or both (e.g., W04), but W09, W10, W11, W12, and W17 have no significant correlation with temperature

  • We investigated the advantages of the calibration method for temperature reconstruction by multi-scale signal decomposition and synthesis from multi-proxies, and analyzed the characteristics of temperature changes in Xinjiang during the period 1850–2001

Read more

Summary

Introduction

December 3, 2015 temperature series might be reconstructed from proxy data with high time resolution (e.g., tree-rings, ice cores), to extend the datasets to compensate for the deficiencies in the instrument observations, especially in western China (e.g., in Xinjiang, Tibet), where few observations are available prior to the 1950s. The results indicate that most tree ring width series contain high- or low-frequency signals of temperature variations, or both (e.g., W04), but W09, W10, W11, W12, and W17 have no significant correlation with temperature.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.