Abstract

Examining climate-related satellite data that strongly relate to seasonal phenomena requires appropriate methods for detecting the seasonality to accommodate different temporal resolutions, high signal variability and consecutive missing values in the data series. Detection of satellite-based Land Surface Temperature (LST) seasonality is essential and challenging due to missing data and noise in time series data, particularly in tropical regions with heavy cloud cover and rainy seasons. We used a semi-parametric approach, involving the cubic spline function with the annual periodic boundary condition and weighted least square (WLS) regression, to extract annual LST seasonal pattern without attempting to estimate the missing values. The time series from daytime Aqua eight-day MODIS LST located on Phuket Island, southern Thailand, was selected for seasonal extraction modelling across three different land cover types. The spline-based technique with appropriate number and placement of knots produces an acceptable seasonal pattern of surface temperature time series that reflects the actual local season and weather. Finally, the approach was applied to the morning and afternoon MODIS LST datasets (MOD11A2 and MYD11A2) to demonstrate its application on seasonally-adjusted long-term LST time series. The surface temperature trend in both space and time was examined to reveal the overall 10-year period trend of LST in the study area. The result of decadal trend analysis shows that various Land Use and Land Cover (LULC) types have increasing, but variable surface temperature trends.

Highlights

  • Satellite-based climate-related data, such as Land Surface Temperature (LST), play a critical role in monitoring climatological processes, land surface energy interactions and water balance at regional to global scales [1,2,3,4], as well as climate change impacts

  • We can achieve our aim to trade-off between suitable curve fitting and a smooth, good-looking curve. This approach introduces fewer free coefficients in the cubic spline function, which ensures that data are not overfitted

  • We presented a simple method to extract annual seasonality in Moderate Resolution Imaging Spectroradiometer (MODIS) LST time series using a spline-based approach

Read more

Summary

Introduction

Satellite-based climate-related data, such as Land Surface Temperature (LST), play a critical role in monitoring climatological processes, land surface energy interactions and water balance at regional to global scales [1,2,3,4], as well as climate change impacts. LST is the skin temperature of the land surface measured at the interface between surface materials (top of plant canopy, water, soil, ice or snow surface) and the atmosphere [5]. Some of the most advanced and widely-used LST products are those from the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the NASA Earth Observation System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. Both space-borne sensors detect and measure the Earth’s surface temperature four times per day, at 10:30/22:30 (Terra) and 13:30/1:30 (Aqua) local overpass-times.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call