Abstract
Using an output from 200-year integration of the Scale Interaction Experiment of EU project-F1 model (SINTEX-F1), the annual ENSO reproduced in the coupled general circulation model is investigated, suggesting the importance of reproducing an annual cycle in realistically simulating ENSO events. Although many features of the annual ENSO are reproduced, the northward expansion of sea surface temperature anomaly (SSTA) in the eastern tropical Pacific stays south of the equator. It is suggested that this model bias is due to the excitation of the too strong Rossby waves in the southeastern tropical Pacific, which reflect at the western boundary and intrude into the eastern equatorial Pacific. The zonal wind stress anomaly along the equator also plays an important role in generating the equatorial Kelvin waves. The amplitude of SSTA for the annual ENSO mode is reproduced, but its variance is only 20% of the observation; this is again due to the lack of northward migration of seasonal SSTA in the equatorial region and weaker coastal Kelvin waves along South America. Remedies for the model bias are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.