Abstract

AbstractThe sustainability of an agricultural field is largely influenced by crop growth habit and management practices such as tillage. Both strongly interact to shape ecosystem properties such as the fluxes and stocks of carbon and nitrogen. Recently, researchers have worked to develop perennial grain crops in order to enhance key ecosystem processes, such as carbon cycling and nitrogen fixation, with the use of perennial crops rather than traditionally used annual crops. In this study, we aimed to understand how soil disturbance combined with vegetation type [annual monoculture crops vs. perennial monocultures (intermediate wheatgrass (IWG)) vs restored native vegetation (RNV)] influenced the soil carbon and nitrogen dynamics. We collected soil samples at two depths (0–15 cm and 15–30 cm) from each vegetation treatment and incubated the soils in the laboratory for 120 days to determine the efflux of carbon and also analyzed the mineralization of both carbon and nitrogen. The results demonstrated the soils from the IWG had the greatest carbon flux, as well as carbon and nitrogen storage (annual monoculture < RNV < IWG). The differences in carbon flux, carbon and nitrogen storage from the IWG to the annual monoculture were 27, 40, 20%, respectively, while the IWG to the RNV was 11, 20, 10%. Shallow soil samples exhibited greater differences in all C and N comparisons between treatments compared to deeper soil samples. Taken together, our findings indicate that crop vegetation type and soil depth strongly influence carbon and nitrogen dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.