Abstract

The major topographic, mesoscale, and urban influences on the wind patterns of the City of Sao Paulo are characterized using one year of surface wind velocity data observed at 11 surface stations within its urban limits. The data was used to study the diurnal and annual variations of wind velocity and horizontal wind divergence within the city. Results showed that the circulation over the investigated area is dominated by three major factors: sea breeze; mountain-valley circulations; and urban effects, such as roughness, building-barrier, and urban heat island. The sea breeze was found to be the dominant feature of the monthly-averaged diurnal variation of Sao Paulo surface winds during the eight warmest months of the year. The sea breeze front induces a velocity minimum at the time of its passage and a post-frontal afternoon velocity maximum. Mountain-valley thermal effects on the flow can be seen in the temporal divergence/convergence patterns. These thermal effects tend to be more important during colder months, at night, and when the wind velocities are low. Nighttime downslope convergent flows are present over the city during winter and spring and daytime upslope divergent flows are present over the city during summer months.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call