Abstract

Small peptides such as dipeptides and tripeptides show various biological activities in organisms. However, methods for identifying dipeptides/tripeptides from complex biological samples are lacking. Here, an annotation strategy involving the derivatization of dipeptides and tripeptides via dansylation was suggested based on liquid chromatography-mass spectrometry (LC-MS) and iterative quantitative structure retention relationship (QSRR) to choose dipeptides/tripeptides by using a small number of standards. First, the LC-autoMS/MS method and initial QSRR model were built based on 25 selected grid-dipeptides and 18 test-dipeptides. To achieve high-coverage detection, dipeptide/tripeptide pools containing abundant dipeptides/tripeptides were then obtained from four dansylated biological samples including serum, tissue, feces, and soybean paste by using the parameter-optimized LC-autoMS/MS method. The QSRR model was further optimized through an iterative train-by-pick strategy. Based on the specific fragments and tR tolerances, 198 dipeptides and 149 tripeptides were annotated. The dipeptides at lower annotation levels were verified by using authentic standards and grid-correlation analysis. Finally, variation in serum dipeptides/tripeptides of three different liver diseases including hepatitis B infection, liver cirrhosis, and hepatocellular carcinoma was characterized. Dipeptides with N-prolinyl, C-proline, N-glutamyl, and N-valinyl generally increased with disease severity. In conclusion, this study provides an efficient strategy for annotating dipeptides/tripeptides from complex samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.