Abstract
Visual-semantic embeddings are central to many multimedia applications such as cross-modal retrieval between visual data and natural language descriptions. Conventionally, learning a joint embedding space relies on large parallel multimodal corpora. Since massive human annotation is expensive to obtain, there is a strong motivation in developing versatile algorithms to learn from large corpora with fewer annotations. In this paper, we propose a novel framework to leverage automatically extracted regional semantics from un-annotated images as additional weak supervision to learn visual-semantic embeddings. The proposed model employs adversarial attentive alignments to close the inherent heterogeneous gaps between annotated and un-annotated portions of visual and textual domains. To demonstrate its superiority, we conduct extensive experiments on sparsely annotated multimodal corpora. The experimental results show that the proposed model outperforms state-of-the-art visual-semantic embedding models by a significant margin for cross-modal retrieval tasks on the sparse Flickr30k and MS-COCO datasets. It is also worth noting that, despite using only 20% of the annotations, the proposed model can achieve competitive performance (Recall at 10 > 80.0% for 1K and > 70.0% for 5K text-to-image retrieval) compared to the benchmarks trained with the complete annotations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.