Abstract

Superheavy dark matter (SHDM) exchanges energy with its environment much slower than particles with masses close to the electroweak scale and has therefore different small-scale clustering properties. Using the neutralino as candidate for the SHDM, we find that free-streaming allows the formation of DM clumps of all masses down to $\ensuremath{\sim}260{m}_{\ensuremath{\chi}}$ in the case of bino. If small-scale clumps evolve from a nonstandard, spiky spectrum of perturbations, DM clumps may form during the radiation-dominated era. These clumps are not destroyed by tidal interactions and can be extremely dense. In the case of a bino, a ``gravithermal catastrophe'' can develop in the central part of the most dense clumps, increasing further the central density and thus the annihilation signal. In the case of a Higgsino, the annihilation signal is enhanced by the Sommerfeld effect. As a result annihilations of superheavy neutralinos in dense clumps may lead to observable fluxes of annihilation products in the form of ultrahigh energy particles, for both cases, Higgsinos and binos, as lightest supersymmetric particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.