Abstract

We not only reproduce burst of short-wavelength spin waves (SWs) observed in recent experiment [S. Woo et al., Nat. Phys. 13, 448 (2017)] on magnetic-field-driven annihilation of two magnetic domain walls (DWs) but, furthermore, we predict that this setup additionally generates highly unusual} pumping of electronic spin currents in the absence of any bias voltage. Prior to the instant of annihilation, their power spectrum is ultrabroadband, so they can be converted into rapidly changing in time charge currents, via the inverse spin Hall effect, as a source of THz radiation of bandwidth $\simeq 27$ THz where the lowest frequency is controlled by the applied magnetic field. The spin pumping stems from time-dependent fields introduced into the quantum Hamiltonian of electrons by the classical dynamics of localized magnetic moments (LMMs) comprising the domains. The pumped currents carry spin-polarized electrons which, in turn, exert backaction on LMMs in the form of nonlocal damping which is more than twice as large as conventional local Gilbert damping. The nonlocal damping can substantially modify the spectrum of emitted SWs when compared to widely-used micromagnetic simulations where conduction electrons are completely absent. Since we use fully microscopic (i.e., Hamiltonian-based) framework, self-consistently combining time-dependent electronic nonequilibrium Green functions with the Landau-Lifshitz-Gilbert equation, we also demonstrate that previously derived phenomenological formulas miss ultrabroadband spin pumping while underestimating the magnitude of nonlocal damping due to nonequilibrium electrons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call