Abstract

Cell membrane proteins are believed to play a critical role in the pathogenesis of autoimmune diseases. However, few membrane autoantigens have been linked with Behçet's disease. Here, a cell-chip was performed to identify autoantibody target cells, and the suspected autoantigens were detected using immunoblotting. The amino acid sequences of the detected proteins were determined using LC-MALDI-TOF/TOF. Putative proteins were recombinantly expressed and purified, and a corresponding ELISA was developed and clinically validated using real clinical samples. It was found that a 36-kDa membrane protein - annexin A2 - was detected in approximately one-third of the patients' blood circulation. The immunohistochemistry results showed that annexin A2 was highly expressed in vascular endothelial cells. Moreover, vascular involvement was significantly higher in the anti-annexin A2 antibody-positive group versus the anti-annexin A2 antibody-negative group among all the clinical samples analyzed, indicating that annexin A2 is a novel endothelial cell membrane antigen involved in Behçet's disease.

Highlights

  • Cell membrane proteins are believed to play a critical role in the pathogenesis of autoimmune diseases

  • human umbilical vein endothelial cells (HUVEC) showed positive binding signals to patient sera, which confirmed the presence of Anti-endothelial cell antibodies (AECAs) in Behçet’s disease (BD) patients

  • Primary vascular endothelial cells have been considered to be the original autoimmune target of BD, these cells are not necessarily the best candidate for the screening of blood circulation autoantibodies, which is partly due to their cell differentiation may cause variation in protein abundance in different situations[24]

Read more

Summary

Introduction

Cell membrane proteins are believed to play a critical role in the pathogenesis of autoimmune diseases. We believe that the combinatorial use of multiple high-throughput technologies might reveal new insight into the basic biology of autoimmune diseases, as multiplexed assay technologies at the molecular and cellular levels have enabled the identification of new biomarkers[20,21]. These findings have provided clear information to understand the pathogenesis and have greatly expanded current knowledge of BD; many questions remain, few of the specific self-antigens that primarily localized on the cell surfaces have been successfully identified. The aim of this study was to identify cell membrane autoantigens of BD

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.