Abstract

Ethnopharmacological relevanceAnneslea fragrans Wall. is traditionally used as a folk medicine in treating indigestion, fever, dysentery, diarrhea, and liver inflammation in China, Vietnam and Cambodia. However, its anti-inflammatory activity and mechanism under a safety therapeutic dose as well as the main chemical components have not yet been fully investigated.Aim of the study: This study aimed to explore the therapeutic effect and possible molecular mechanisms of aqueous-methanol extract (AFE) of A. fragrans leaves on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mice and illustrate its potent anti-inflammatory chemical compounds. Materials and methodsThe AFE was obtained and then analyzed by high performance liquid chromatography (HPLC). Phytochemical investigation on the AFE was carried out to isolate and characterize its major components. The acute toxicity test was performed to provide the safety information of AFE. Subsequently, the protective effect of AFE on DSS-induced UC was evaluated by physiological changes, histopathological and immunohistochemical analysis, and the expressions of antioxidant enzyme, pro-inflammatory cytokines and anti-inflammatory cytokines. The expressions of target proteins in nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) were determined by western blot analysis. The tight junction (TJ) proteins in colon tissue were performed by immunohistochemical technique for evaluating the intestinal barrier integrity. ResultsHPLC guided isolation of AFE resulted into two dihydrochalcones, which were elucidated as vacciniifolin (1) and confusoside (2). Acute toxicity evaluation revealed that median lethal dose (LD50) of AFE was greater than 5000 mg/kg. Furthermore, AFE significantly attenuated ulcerative colitis symptoms, suppressed myeloperoxidase activity, and increased the expression of superoxide dismutase and glutathione. AFE treatment could also reduce the levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 and increase the levels of interleukin-4 and interleukin-10 in colon tissues and serum of DSS-induced UC mice. In addition, AFE significantly increased the expression of zonula occludens-1, occludin and claudin-1, and inhibited the phosphorylation of target protein of the NF-κB and MAPK signaling pathways in colon tissue. ConclusionDihydrochalcone glycosides are the major chemical constituents in AFE. AFE ameliorated DSS-induced UC in mice by inhibiting the inflammatory response via modulation of NF-κB and MAPK pathways and maintaining the intestinal barrier function, indicating that the plant A. fragrans could be used as a therapeutic candidate for ulcerative colitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.