Abstract

The urgent need to conserve aquatic biodiversity and the lack of spatial data on biodiversity has motivated conservation planners and researchers to search for more readily obtainable information that could be used as proxies or surrogates. The surrogate taxon approach shows promise in some aquatic environments (e.g. intertidal) but not others (e.g. coral reefs, temperate rocky reefs). Estuaries are transitional environments at the land–sea junction with a unique biodiversity, but are the most threatened of aquatic environments because of high levels of human use. The comparatively small numbers of conservation reserves means that estuarine biodiversity is poorly protected. Selecting additional conservation reserves within estuaries would be facilitated by the identification of a suitable surrogate that could be used in conservation planning. In one estuary in Southeast Australia, we evaluated separately the effectiveness of annelids, arthropods, and molluscs as surrogates for predicting the species richness, abundance, assemblage variation, and summed irreplaceability of other species and for coincidentally representing other species in networks of conservation reserves selected for each surrogate. Spatial patterns in the species richness and assemblage variation (but not summed irreplaceability) of each surrogate were significantly correlated with the spatial patterns of other species. The total abundance of annelids and the total abundance of arthropods were each significantly correlated with the total abundances of other species. Networks of conservation reserves selected to represent each surrogate performed significantly better than random selection in representing other species. The greatest number of non-surrogate species was coincidentally included in reserves selected for the group of mollusc species. We conclude that annelids and arthropods are effective surrogate taxa for identifying spatial variation in several measures of conservation value (species richness, abundance, assemblage variation) in estuaries. We also conclude that spatial data on annelids, arthropods or molluscs can be used to select networks of conservation reserves in estuaries. The demonstrated effectiveness of these surrogates should facilitate future conservation planning within estuaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.