Abstract

We have studied an anneal-less domain wall displacement detection (DWDD) disk of a land/groove recording on a deep groove substrate using a numerical aperture (NA) 0.65 objective lens and a blue laser diode (LD). The substrates were prepared using a stamper formed by reactive ion etching (RIE) and O2 plasma treatment to realize both steep side-wall angles and smooth surfaces on the substrates. In designing the groove shape, we have clarified three key factors: the groove edge shape, the groove depth and the land width. These factors affected the magnetic film discontinuity at the groove edge and the recording power margin on the land. We have achieved a recording density of 27 Gbit/in2 by optimizing the groove shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.