Abstract
Surface-enhanced Raman spectroscopy (SERS) is an ultra-sensitive analytical tool that can effectively detect and identify molecules by their unique vibrational fingerprints. Development of SERS substrates with good stability, high sensitivity and reproducibility is still a big challenge in practical applications. Recently, 2D materials/metallic hybrid SERS substrates provide a new prospect to improve the SERS performance. Here, we obtain a monolayer MoS2 covered silver nanoparticle (AgNP) array as a high-performance SERS substrate. Annealing temperature-dependent SERS signals on the hybrid substrate have been explored. The optimum SERS performance was obtained at 290 ℃ (the detection limit of 10−13 M for Rhodamine 6G and the corresponding SERS enhancement factor of 8.3 × 109), which is attributed to the better contact between AgNPs and MoS2 and the uniform AgNPs with appropriate particle sizes. The prepared MoS2/AgNPs hybrid substrates also have been utilized to detect various molecules, which demonstrates a great potential for applications in food safety and biochemical environmental detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.