Abstract

We fabricated 5 at.% Mn-added polycrystalline BiFeO3 films and investigated the annealing temperature effect on structural, ferroelectric and magnetic properties. In the x-ray diffraction patterns, only the diffraction peaks due to the BiFeO3 structure were observed and no secondary phase could be observed at annealing temperatures between 773 and 923 K. Adding Mn suppressed the leakage current density in the high electric field region when compared to pure BiFeO3 films. The conduction mechanism of the Mn-added BiFeO3 films was dominated by Ohmic conduction. Remanent polarization of the Mn-added polycrystalline BiFeO3 films for an applied electric field of approximately 1.5 mV/cm was 63 μC/cm2 for the specimen annealed at 773 K and 46 μC/cm2 for the specimen annealed at 923 K, although the remanent polarization still exhibited a tendency to increase with an increase in the electric field. Spontaneous magnetization was obtained at high annealing specimens. This study revealed that the annealing temperature strongly affected the ferroelectric and magnetic properties in Mn-added polycrystalline BiFeO3 films. In addition, by optimizing the annealing temperature, we realized multiferroics coexistent with spontaneous magnetization and spontaneous polarization at room temperature in the Mn-added polycrystalline BiFeO3 film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.