Abstract

The annealing behavior of nitrogen-implanted GaAs samples has been investigated by secondary ion mass spectroscopy, current-voltage (I-V) and capacitance-frequency (C-F) measurements. The I-V data show that the conductivity of as-implanted samples is dominated by variable-range hopping between defect states below 300 K. The implanted layer becomes highly resistive after annealing. The activation energy of the resistance is found to increase from 0.2 eV for as-implanted samples to 0.71 eV for 950°C-annealed samples. Significant capacitance dispersion is observed over frequency for implanted samples. Based on a proposed equivalent circuit, the high-frequency capacitance dispersion is shown to be the result of resistance-capacitance (RC) time constant effects. The increase of activation energy of the resistance can be explained by the creation of deep traps by high temperature annealing. Traps at 0.69 eV and 0.82 eV are detected for 700°C and 950°C-annealing, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call