Abstract

The annealing treatment plays a crucial role in tailoring the properties of synthetic diamond materials, especially those doped with various elements in order to form specific color centers like nitrogen-vacancy (NV), silicon-vacancy (Si-V), germanium-vacancy (Ge-V), etc. This study delves into the annealing of 175 μm-thick Ge-doped polycrystalline diamond (PCD) films grown by microwave plasma-assisted chemical vapor deposition (MPCVD). Large-area PCD plate was cut into smaller equivalent 5 × 5 mm2 pieces, which were separately subjected to annealing in microwave plasma in H2 atmosphere, to annealing in vacuum or to annealing under high-pressure high-temperature conditions (HPHT, 5.9 GPa, 2000 °C). The structure, phase composition and photoluminescence (PL) of samples before and after various annealing processes were investigated. All applied types of annealing enhance both the Si-V and Ge-V lines in PL at room temperature. Increasing annealing temperature leads to gradual decrease of full widths at half-maxima (FWHM) of diamond Raman peak (1332.5 cm−1), as well as Si-V (738 nm) and Ge-V (602 nm) PL peaks. In addition, the limitations for each type of annealing are established. The obtained results are crucial for the design of CVD-grown Ge-doped and Si-doped PCD materials that can be used for applications in photonics such as single photon sources, biomarkers, as well as for the fabrication of optical diamond thermometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call