Abstract

Infrared vibrations of as-deposited and annealed semiconducting boron carbide thin films were investigated by midinfrared spectroscopic ellipsometry. The strong boron-hydrogen resonance at ∼2560 cm−1 in as-deposited films reveals considerable hydrogen incorporation during plasma-enhanced chemical vapor deposition. Extended annealing at 600 °C caused significant reduction in film thickness, substantial reduction of boron-hydrogen bond resonance absorption, and development of distinct blue-shifted boron-carbon and icosahedral vibration mode resonances. Our findings suggest that annealing results in substantial loss of hydrogen and in development of icosahedral structure, accompanied by strain relaxation and densification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.