Abstract
The effects of thermal annealing on Hall-effect measurement and photoluminescence (PL) from undoped n-type ZnO/GaAs thin-film samples have been studied. The evolutions of carrier concentration, electrical resistivity, and PL spectrum at various annealing conditions reveal that the dominant mechanism that affects the electrical and PL properties is dependent on the amount of thermal energy and the ambient pressure applied during the annealing process. At low annealing temperatures, annihilation of native defects is dominant in reducing the carrier concentration and weakening the low-energy tail of the main PL peak, while the GaAs substrate plays only a minor role in carrier compensations. For the higher temperatures, diffusion of Ga atoms from the GaAs substrate into ZnO film leads to a more n-type conduction of the sample. As a result, the PL exhibits a high-energy tail due to the high-level doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.