Abstract

Thin films of Se87.5Te10Sn2.5 were prepared by vacuum thermal evaporation technique. Various optical constants were calculated for the studied composition. The mechanism of the optical absorption follows the rule of direct transition. It was found that the optical energy gap (Eg) decreases from 2.26 to 1.79eV with increasing the annealing temperature from 340 to 450K. This result can be interpreted by the Davis and Mott model. On the other hand, the maximum value of the refractive index (n) is shifted towards the long wavelength by increasing the annealing temperature. In addition, the high frequency dielectric constant (εL) increased from 31.26 to 48.11 whereas the ratio of the free carriers concentration to its effective of mass N/m⁎ decreased from 4.3 to 2.09 (×1057(m−3Kg−1)). The influence of annealed temperature on the structure was studied by using the X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD studies show that the as-deposited films are amorphous in nature, but the crystallinity improved with increasing the annealing temperature. Furthermore the particle size and crystallinity increased whereas the dislocation and strains decreased with increasing the annealing temperature. SEM examination showed that the annealing temperature induced changes in the morphology of the as-deposited film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.