Abstract
Abstract Vanadium dioxide (VO2) is one kind of desired thermochromic material for many smart devices because of its notable temperature-responsive infrared modulation and metal−insulator transition with underlying structural phase transition (SPT). Understanding on the tuning of these properties in an anticipated manner is essential to accomplish device realization. Here, we report the annealing time induced modifications in SPT and the thermochromic properties of VO2 thin films. Using RF sputtering deposition, VO2 thin films were grown at room temperature and their ex-situ annealing was carried out at 600 °C for different time from 2 min to 60 min. Structural, electronic and thermochromic properties of these films were investigated. VO2 thin films samples annealed for longer time exhibit larger crystallite size, higher surface roughness and SPT temperature, and the reduced hysteresis width of SPT during heating and cooling cycle. X-ray absorption spectroscopy results indicate that the variation in the annealing time do not alter the electronic structure significantly. Nevertheless, VO2 thin film samples with prolonged annealing display higher IR transmittance modulation across the SPT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.