Abstract

The structural growth and optical and photovoltaic properties of the organic–inorganic hybrid structures of zinc oxide (ZnO)-nanorods/poly-3-hexylthiophene (P3HT) and two variations of organic polymer blends of ZnO/P3HT:C60 fullerene and ZnO/P3HT:6,6]-phenyl C61 butyric acid methyl ester were studied in detail during thermal annealing. The ordering of the P3HT nanocrystals increased during annealing, which also improved hole transport in the hybrid structures. The optical constants of the ZnO/P3HT:[6,6]-phenyl C61 butyric acid methyl ester (PCBM) films elevated with annealing temperature due to the improved crystallisation induced by the formation of P3HT crystalline domains. As a result, a maximum power conversion efficiency of approximately 1.03% was achieved for the annealed ZnO/P3HT:PCBM device at 140°C. These findings indicate that ZnO-nanorods/P3HT:PCBM films are stable at temperatures up to 160°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.