Abstract

We study the annealing and rejuvenation behavior of a two-dimensional amorphous solid model under oscillatory shear. We show that, depending on the cooling protocol used to create the initial configuration, the mean potential energy can either decrease or increase under subyield oscillatory shear. For post-yield oscillatory shear, the mean potential energy increases and is independent on the initial conditions. We explain this behavior by modeling the dynamics using a simple model of forced dynamics on a random energy landscape and show that the model reproduces the qualitative behavior of the mean potential energy and mean-square displacement observed in the particle based simulations. This suggests that some important aspects of the dynamics of amorphous solids can be understood by studying the properties of random energy landscapes and without explicitly taking into account the complex real-space interactions which are involved in plastic deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.