Abstract

We have investigated phase separation, silicon nanocrystal (Si NC) formation and optical properties of Si oxide (SiOx, 0<x<2) films by high-vacuum annealing and dry oxidation. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous–oxide/silane flow ratios. The physical and optical properties of the SiOx films were studied as a result of high-vacuum annealing and thermal oxidation. X-ray photoelectron spectroscopy (XPS) reveals that the as-deposited films have a random-bonding or continuous-random-network structure with different oxidation states. After annealing at temperatures above 1000 °C, the intermediate Si continuum in XPS spectra (referring to the suboxide) split to Si peaks corresponding to SiO2 and elemental Si. This change indicates the phase separation of the SiOx into more stable SiO2 and Si clusters. Raman, high-resolution transmission electron microscopy and optical absorption confirmed the phase separation and the formation of Si NCs in the films. The size of Si NCs increases with increasing Si concentration in the films and increasing annealing temperature. Two photoluminescence (PL) bands were observed in the films after annealing. The ultraviolet (UV)-range PL with a peak fixed at 370–380 nm is independent of Si concentration and annealing temperature, which is a characteristic of defect states. Strong PL in red range shows redshifts from ∼600 to 900 nm with increasing Si concentration and annealing temperature, which supports the quantum confinement model. After oxidation of the high-temperature annealed films, the UV PL was almost quenched while the red PL shows continuous blueshifts with increasing oxidation time. The different oxidation behaviors further relate the UV PL to the defect states and the red PL to the recombination of quantum-confined excitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.