Abstract

Both in vivo and in vitro, specific sequences in double-stranded DNA can adopt the left-handed Z-form when underwound. Recently, the B-Z transition of DNA has been studied in detail in magnetic tweezers experiments by several groups. We present a theoretical description of this transition, based on an annealed random copolymer model. The transition of a switchable sequence is discussed as a function of energetic and geometric parameters of the B- and Z-forms, of the applied boundary conditions, and of the characteristics of the B-Z interface. We address a possible torsional softening upon the B-Z transition. The model can be also applied to other biofilaments with annealed torsional/flexural degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.