Abstract

Although artificial neural networks can represent a variety of complex systems with a high degree of accuracy, these connectionist models are difficult to interpret. This significantly limits the applicability of neural networks in practice, especially where a premium is placed on the comprehensibility or reliability of systems. A novel artificial neural-network decision tree algorithm (ANN-DT) is therefore proposed, which extracts binary decision trees from a trained neural network. The ANN-DT algorithm uses the neural network to generate outputs for samples interpolated from the training data set. In contrast to existing techniques, ANN-DT can extract rules from feedforward neural networks with continuous outputs. These rules are extracted from the neural network without making assumptions about the internal structure of the neural network or the features of the data. A novel attribute selection criterion based on a significance analysis of the variables on the neural-network output is examined. It is shown to have significant benefits in certain cases when compared with the standard criteria of minimum weighted variance over the branches. In three case studies the ANN-DT algorithm compared favorably with CART, a standard decision tree algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.