Abstract

This paper presents a method for the forecasting of the voltage and the frequency at the point of connection between a battery energy storage system installed at The University of Manchester and the local low-voltage distribution grid. The techniques are to be used in a real-time controller for optimal management of the storage system. The forecasters developed in this study use an artificial neural network (ANN)-based technique and can predict the grid quantities with two different time windows: one second and one minute ahead. The developed ANNs have been implemented in a dSPACE-based real-time controller and all forecasters show very good performance, with correlations coefficients >0.85, and mean absolute percentage errors of <0.2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.