Abstract

Our brain can be recognized as a network of largely hierarchically organized neural circuits that operate to control specific functions, but when acting in parallel, enable the performance of complex and simultaneous behaviors. Indeed, many of our daily actions require concurrent information processing in sensorimotor, associative, and limbic circuits that are dynamically and hierarchically modulated by sensory information and previous learning. This organization of information processing in biological organisms has served as a major inspiration for artificial intelligence and has helped to create in silico systems capable of matching or even outperforming humans in several specific tasks, including visual recognition and strategy-based games. However, the development of human-like robots that are able to move as quickly as humans and respond flexibly in various situations remains a major challenge and indicates an area where further use of parallel and hierarchical architectures may hold promise. In this article we review several important neural and behavioral mechanisms organizing hierarchical and predictive processing for the acquisition and realization of flexible behavioral control. Then, inspired by the organizational features of brain circuits, we introduce a multi-timescale parallel and hierarchical learning framework for the realization of versatile and agile movement in humanoid robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.