Abstract

This study aims to establish systematic multiscale models to predict the compressive strength of cement mortar containing a high volume of fly ash (FA) and to be used by the construction industry with no theoretical restrictions. For that purpose, a wide experimental data (a total of 450 tested cement mortar modified with FA) from different academic research studies have been statically analyzed and modeled. For that purpose, Linear and Nonlinear regression, M5P-tree, and Artificial Neural Network (ANN) technical approaches were used for the qualifications. In the modeling process, most relevant parameters affecting the strength of cement mortar, i.e. fly ash (class C and F) incorporation ratio (0−70% of cement's mass), water-to-binder ratio (0.235–1.2), and curing ages (1–365 days). According to the correlation coefficient (R), mean absolute error and the root mean a square error, the compressive strength of cement mortar can be well predicted in terms of w/b, fly ash, and curing time using various simulation techniques. The results of this study suggest that the Non-linear regression-based model (NLR) and ANN are performing better than other applied models using training and testing datasets. The sensitivity investigation concludes that the curing time is the most dominating parameter for the prediction of the compressive strength of cement mortar with this data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.