Abstract

Intense and localised physico-chemical effects realised by cavitation such as generation of hydroxyl radicals, high-speed jets, and very high energy dissipation rates are being harnessed for a wide range of applications from emulsions, crystallisation, reactions to water treatment and waste valorisation. Single cavity models are typically used to quantitatively estimate such localised effects of cavity collapse. However, these models demand significant computing resources for resolving fast dynamics and therefore are very difficult, if not impossible, to integrate with CFD based cavitation device or reactor scale models. This severely limits the utility of device/ reactor scale models in simulating key applications of interest. In this work, we present, for the first time, artificial neural network (ANN) based surrogate models which accurately represent complex physico-chemical effects of cavity collapse. Recently developed cavity dynamics model was used for generating training data set encompassing both acoustic and hydrodynamic cavitation. Appropriate methodology for training ANN was developed. A shallow three hidden layer dense ANN was found to be more effective for estimating three main effects of cavity collapse: jet velocity, •OH generation and localised energy dissipation rate. The performance of trained ANN was then evaluated by comparing the predictions with the totally unseen data obtained from the cavity dynamics model. The developed ANN was shown to simulate unseen data very well not just within the range of training data (interpolation) but also beyond (extrapolation). Algebraic equations representing ANN are included to facilitate incorporation in device/ reactor scale CFD models. The presented methodology and results will be useful for developing high-fidelity CFD models of cavitation devices/ reactors based on key physico-chemical effects of cavity collapse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.