Abstract
Artificial neural network (ANN) has its unique advantage in the area of incipient faults detection. This article presents an ANN based real time fault detection and protection system for two types of incipient faults viz. inter-turn insulation failure and bearing wear in single-phase induction motor. The ANN fault detection (ANNFD) program is developed in C++ and implemented using a PC based DSP controller board. The ANN is trained and tested by collecting the online experimental data for five input parameters viz. motor intake current, rotor speed, winding temperature, bearing temperature and noise. The results are compared with the signature of measurable parameters. The results of evaluation indicate that the system produces satisfactory performance for the fault detection as well as for the protection of motor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Power and Energy Conversion
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.