Abstract

Dynorphin A is an endogenous opioid peptide that is part of the KNDy system in the hypothalamus of mammals. This peptide acts as an inhibitor of the GnRH pulse generation, thus regulating the onset of puberty and reproductive cycles. The PDYN gene encodes the propeptide Prodynorphin, the precursor of Dynorphin A. Despite its physiological relevance, PDYN has not emerged as a candidate gene associated with puberty in genomic association studies conducted in cattle. The present work aimed to search for signatures of selection on the PDYN gene among cattle breeds. To this, the whole genome sequences from 57 samples of ten cattle breeds were used. The samples were grouped based on breed selection history and their productive differences, particularly in terms of sexual precocity. The population structure was analyzed using Principal Component Analyses. To evidence recent selection processes, neutrality tests, such as Tajima’s D and Fu & Li’s F* and D* were performed in defined functional regions of PDYN. The putative promoter of PDYN showed a population structure that is in agreement with the criteria considered to make the groups. In that region, neutrality tests were consistently negative and resulted in statistically significant for the dairy breeds. Also, these breeds exhibited less variability in the haplotype analyses than the others. The results presented here suggest that regulatory regions of PDYN could be under positive selection, particularly in dairy breeds. Key words: reproduction; KNDy neurons; Dynorphin; signatures of selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call