Abstract
One of the most interesting brain machine interface (BMI) applications, is the control of assistive devices for rehabilitation of neuromotor pathologies. This means that assistive devices (prostheses, orthoses, or exoskeletons) are able to detect user motion intention, by the acquisition and interpretation of electroencephalographic (EEG) signals. Such interpretation is based on the time, frequency or space features of the EEG signals. For this reason, in this paper a coherence-based EEG study is proposed during locomotion that along with the graph theory allows to establish spatio-temporal parameters that are characteristic in this study. The results show that along with the temporal features of the signal it is possible to find spatial patterns in order to classify motion tasks of interest. In this manner, the connectivity analysis alongside graphs provides reliable information about the spatio-temporal characteristics of the neural activity, showing a dynamic pattern in the connectivity during locomotions tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.