Abstract

El presente artículo aborda el diseño y la implementación de estrategias de control híbrido (conmutado) para manipular la dinámica de rotación del eje un motor DC. Se presenta la implementación de técnicas no-convencionales de control por modos deslizantes y control óptimo conmutado, comparando su desempeño con el control PID convencional. Las implementaciones se realizan tanto en una arquitectura computacional configurada (microcontrolador Arduino) como en una arquitectura configurable (FPGA). De los resultados obtenidos se observa que para cualquiera de las dos plataformas de implementación, el desempeño de las técnicas no-convencionales de control es superior respecto al PID clásico, principalmente en cuanto respecta al error en estado estacionario ante la acción de perturbaciones. En términos de implementación, la técnica de control óptimo conmutado resulta ser más simple que el SMC. Análisis complementarios de robustez y optimalidad forman parte del trabajo futuro.

Highlights

  • Conventional control techniques based on PID (p roportional+integral+derivative) algorithms have been widely employed in industrial applications over the last fifty years

  • In order to apply the sliding mode control SMC technique, it is necessary to express the system equation given in (1) by its corresponding staterepresentation (3), where the states have been chosen as the velocity x1(t) and the acceleration x2(t) of the motor shaft, and the input u(t) corresponds with a binary input representing the digital PWM signal

  • After performing numerical verification of the control algorithms proposed, hardware implementation on a Results shown a better performance from the non-conventional techniques, compared with the classical PID, in terms of the dynamical response to disturbances

Read more

Summary

Introduction

Conventional control techniques based on PID (p roportional+integral+derivative) algorithms have been widely employed in industrial applications over the last fifty years. State-space based control techniques offer advantages compared with classical ones mainly related to computational implementation and the possibility to analyze nonlinear and time-variant systems, for the MIMO (multiple-input-multiple-output) and SISO (singleinput-single-output) cases. This state-space based control takes a special shape when combines the continuous nature of engineering processes with discrete rules in the so-called hybrid or switching control (Goebel, 2009; Lamloumi, 2012; Mingjun & Tarn, 2003). Comparison of SMC (sliding mode control) and Optimal Hamiltonianbased switching control techniques is performed, starting with a classical non-robust PID algorithm as a base. Digital implementation of each controller is realized in two hardware platforms: a Microcontroller and a FPGA

The experimental system
Mathematical modeling of system
Control design
Classical PID
Sliding mode control SMC
Switching optimal control
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.